Biologia - Matura Czerwiec 2015, Poziom rozszerzony (Formuła 2015) - Zadanie 11. Na schemacie przedstawiono działanie przeciwprądowego mechanizmu wymiany gazowej (zasady przeciwprądu) w skrzelach ryb kostnoszkieletowych. Liczby określają ciśnienie parcjalne tlenu (w mm Hg) w wodzie przepływającej przez skrzela i we krwi naczyń

Jeżeli do licznika i do mianownika nieskracalnego dodatniego ułamka dodamy połowę jego licznika, to otrzymamy \frac{4}{7} , a jeżeli do licznika i do mianownika dodamy 1, to otrzymamy \frac{1}{2} . Wyznacz ten ułamek. Oznaczamy x – licznik y – mianownik \left \{ \begin{array}{l} \frac{ x+\frac{x}{2} }{ y+\frac{x}{2} } = \frac{4}{7} \\ \frac{x+1}{y+1} = \frac{1}{2} \end{array} \right. \left \{ \begin{array}{l} \frac{ \frac{3}{2}x }{ \frac{2y}{2}+\frac{x}{2} } = \frac{4}{7} \\ x+1 = \frac{1}{2}*(y+1) \end{array} \right. \left \{ \begin{array}{l} \frac{ \frac{3}{2}x }{ \frac{2y+x}{2} } = \frac{4}{7} \\ 2x+2 = y+1 \end{array} \right. \left \{ \begin{array}{l} \frac{ \frac{3}{2}x }{ \frac{2(2x+1) +x}{2} } = \frac{4}{7} \\ 2x+1 = y \end{array} \right. \left \{ \begin{array}{l} \frac{ \frac{3}{2}x }{ \frac{5x+2}{2} } = \frac{4}{7} \\ 2x+1 = y \end{array} \right. \left \{ \begin{array}{l} \frac{3}{2}x = \frac{4}{7} * \frac{5x+2}{2} \\ 2x+1 = y \end{array} \right. \left \{ \begin{array}{l} 3x = \frac{4}{7} * (5x+2) \\ 2x+1 = y \end{array} \right. \left \{ \begin{array}{l} 21x = 4* (5x+2) \\ 2x+1 = y \end{array} \right. \left \{ \begin{array}{l} 21x = 20x+8 \\ 2x+1 = y \end{array} \right. \left \{ \begin{array}{l} x = 8 \\ 2*8+1 = y \end{array} \right. \left \{ \begin{array}{l} x = 8 \\ y = 17 \end{array} \right. Sprawdzenie \left \{ \begin{array}{l} \frac{8+4}{17+4} = \frac{12}{21} = \frac{4}{7} \\ \frac{8+1}{17+1} = \frac{9}{18} = \frac{1}{2} \end{array} \right. Odpowiedź: \frac{8}{17}

Egzamin zawodowy B.34 2015 czerwiec: styczeń 2015: Matura poziom rozszerzony: Matematyka – matura poziom rozszerzony. Język polski – matura poziom rozszerzony. Opublikowane w Matura Czerwiec 2018 zadanie 31 Rzucamy cztery razy symetryczną monetą. Po przeprowadzonym doświadczeniu zapisujemy liczbę uzyskanych orłów (od 0 do 4) i liczbę uzyskanych reszek (również od 0 do 4). Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w tych czterech rzutach liczba uzyskanych orłów będzie większa niż liczba uzyskanych cztery razy symetryczną monetą. Po przeprowadzonym doświadczeniu zapisujemy liczbę uzyskanych orłów (od 0 do 4) i liczbę uzyskanych reszek (również od 0 do 4). Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w tych czterech rzutach liczba uzyskanych orłów będzie większa niż liczba uzyskanych dostęp do Akademii! 31.3.(0-1) Napisz, stosując wzory półstrukturalne (grupowe) związków organicznych, schemat reakcji, która była podstawą eksperymentu. Rozwiązanie Strona głównaZadania maturalne z biologiiMatura Czerwiec 2015, Poziom rozszerzony (Formuła 2007) Kategoria: Inżynieria i badania genetyczne Typ: Zamknięte (np. testowe, prawda/fałsz) Restryktazy (enzymy restrykcyjne) – to enzymy wytwarzane przez bakterie w celu obrony przed wirusowym DNA, ale są także powszechnie wykorzystywane przez człowieka w inżynierii genetycznej. Oceń prawdziwość informacji dotyczących mechanizmu działania restryktaz i ich zastosowania w inżynierii genetycznej. Zaznacz w tabeli P, jeśli informacja jest prawdziwa, albo F – jeśli jest fałszywa. 1. Warunkiem przecięcia łańcucha DNA przez restryktazę jest wcześniejsze rozpoznanie określonej sekwencji nukleotydów właściwych dla danego enzymu. P F 2. Ten sam rodzaj restryktazy może rozcinać różne cząsteczki DNA na fragmenty z tępymi lub lepkimi końcami. P F 3. Restryktazy przeprowadzają także reakcje łączenia odcinków DNA wektora i DNA dawcy. P F Rozwiązanie Poprawna odpowiedź: 1 – P; 2 – F; 3 – F Za poprawną ocenę wszystkich trzech informacji – 1 pkt

W trójkącie ABC, w którym |AC|=|BC|, na boku AB wybrano punkt D taki, że |BD|=|CD| oraz |∢ACD|=21∘ (zobacz rysunek).

Matura 2015. MATEMATYKA poziom podstawowy dla TECHNIKUM [ODPOWIEDZI, ARKUSZE CKE] Adrian WykrotaMatura 2015. MATEMATYKA poziom podstawowy dla TECHNIKUM. ODPOWIEDZI, ARKUSZE CKE, ROZWIĄZANIA ZADAŃ. To wszystko znajdziecie dzisiaj na naszej stronie. Matura 2015 z matematyki dla techników pojawi się tutaj około godziny Wtedy będziecie mogli porównać swoje wyniki z tymi poprawnymi. Oby wszystkie były takie same!Zobacz również: Matura 2015. Matematyka już dzisiaj. A jak wrażenia po polskim?Matura 2015. MATEMATYKA dla TECHNIKUM poziom podstawowy - ODPOWIEDZI:Odpowiedzi pojawią się tutaj około godziny kiedy tylko CKE opublikuje arkusze pytań. Rozwiązania przygotowujemy wspólnie z nauczycielem 1Cena pewnego towaru wraz z 7-procentowym podatkiem VAT jest równa 34 347 zł. Cena tego samego towaru wraz z 23-procentowym podatkiem VAT będzie równaA. 37 236 złB. 39 842,52 złC. 39 483 złD. 42 246,81 złOdpowiedź CZadanie 2Odpowiedź BZadanie 3 Odpowiedź DZadanie 4Odpowiedź AZadanie 5Odpowiedź BZadanie 6Odpowiedź AZadanie 7Odpowiedź BZadanie 8Odpowiedź BZadanie 9Odpowiedź CZadanie 10Odpowiedź BZadanie 11Odpowiedź AZadanie 12Odpowiedź CZadanie 13Odpowiedź DZadanie 14Odpowiedź DZadanie 15Odpowiedź DZadanie 16Odpowiedź BZadanie 17Odpowiedź AZadanie 18Odpowiedź AZadanie 19Odpowiedź CZadanie 20Odpowiedź AZadanie 21Odpowiedź CZadanie 22Odpowiedź CZadanie 23Odpowiedź DZadanie 24Odpowiedź DZadanie 25Odpowiedź BZadanie 26Zadanie 27Zadanie 28Zadanie 29Zadanie 30Dany jest skończony ciąg, w którym pierwszy wyraz jest równy 444 , a ostatni jest równy 653. Każdy wyraz tego ciągu, począwszy od drugiego, jest o 11 większy od wyrazu bezpośrednio go poprzedzającego. Oblicz sumę wszystkich wyrazów tego ciągu.
Chemia - Matura Czerwiec 2021, Poziom rozszerzony (Formuła 2015) Gdańsk 2015. Chlor występuje w związkach chemicznych na wielu różnych stopniach utlenienia
W nieskończonym ciągu arytmetycznym ( a_n ) , określonym dla n \geq 1 , suma jedenastupoczątkowych wyrazów tego ciągu jest równa 187. Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu, jest równa 12. Wyrazy a_1, a_3 , a_k ciągu ( a_n ) , w podanej kolejności, tworzą nowy ciąg – trzywyrazowy ciąg geometryczny ( b_n ) . Oblicz k . Rozpisujemy poszczególne wyraz z wzoru na wyraz ogólny: a_n = a_1 + (n-1)r a_1 = a_1 a_3 = a_1 + 2r a_9 = a_1 + 8r Korzystamy ze wzoru na sumę n początkowych wyrazów ciągu arytmetycznego i zapisujemy równanie: S_n = \frac{a_1+a_n}{2} S_{11} = 187 \frac{2a_1+10r}{2}*11 = 187 (a_1+5r)*11=187 a_1+5r=17 Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu jest równa 12: \frac{a_1+a_3+a_9}{3} = 12 a_1 + a_1 + 2r + a_1 + 8r = 36 3a_1 + 10r = 36 tworzymy układ równań: \left \{ \begin{array}{r} a_1 + 5r = 17 \\ 3a_1 + 10r = 36 \end{array} \right. \left \{ \begin{array}{r} 2a_1 + 10r = 34 \\ 3a_1 + 10r = 36 \end{array} \right. \left \{ \begin{array}{r} a_1 + 5r = 17 \\ a_1 = 2 \end{array} \right. \left \{ \begin{array}{r} 2 + 5r = 17 \\ a_1 = 2 \end{array} \right. \left \{ \begin{array}{r} 5r = 17 - 2 \\ a_1 = 2 \end{array} \right. \left \{ \begin{array}{r} 5r = 15 \\ a_1 = 2 \end{array} \right. \left \{ \begin{array}{r} r = 3 \\ a_1 = 2 \end{array} \right. Obliczmy a_1, a_3, a_k a_1 = 2 a_3 = a_1 + 2r = 2 + 2*3 = 2 + 6 = 8 a_k = a_1 + (k-1)r = 2 + (k-1)3 = 2 + 3k -3 = 3k -1 Te wyrazy w kolejności tworzą ciąg geometryczny. Korzystamy ze wzoru na środkowy wyraz ciągu geometrycznego a_3^2 = a_1*a_k 8^2 = 2(3k-1) 64 = 6k - 2 66 = 6k k = 11
Strona 6 z 19 Poprawna odpowiedź Nazwa substancji: siarka Nazwa metody: sączenie lub filtracja Zadanie 7.3. (0–1) Schemat punktowania 1 p. – za poprawne ustalenie masy (wyrażonej w gramach) siarki w obu próbkach.

23 maja, 2018 20 lipca, 2019 Zadanie 31 (0-2) Dwunasty wyraz ciągu arytmetycznego (an), określonego dla n ≥ 1, jest równy 30, a suma jego dwunastu początkowych wyrazów jest równa 162. Oblicz pierwszy wyraz tego ciągu. Źródło CKE - Arkusz egzaminacyjny 2017/2018 - Matura maj poziom podstawowy Analiza: Punktem wyjścia jest wzór na sumę wyrazów ciągu arytmetycznego (wzór dostępny w tablicach maturalnych na stronie 3): Dla dwunastu wyrazów () przyjmuje on postać: Jedyną niewiadomą jest . Wyznaczmy go: Pozostaje nam już tylko podstawić wartości: Można to rozwiązać drugim sposobem: bezpośrednio z definicji ciągu arytmetycznego - równania na n-ty wyraz ciągu i równania na sumę n pierwszych wyrazów ciągu w postaci zależnej od . Równanie to także jest dostępne w tablicach: Dla przećwiczenia zachęcam przelicz. Myślę, że wystarczająco naprowadziłem. Oczywiście wynik musi być zgodny z wynikiem z pierwszego sposobu. Ciągi Tematyczny arkusz maturalny - ciągi Zestaw zadań egzaminacyjnych posegregowanych tematycznie z lat ubiegłych. Temat przewodni zestawu - ciągi. Arkusz można wykorzystać w celu przećwiczenia tej tematyki pod kątem matury -poziom podstawowy. Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią

Zadanie 31. (2 pkt) Dany jest trójkąt ABC. Odcinek CD jest wysokością tego trójkąta, punkt E jest środkiem boku BC (tak jak na rysunku) i CD DE. Udowodnij, że trójkąt CDE jest równoboczny. Rozwiązanie (I sposób) Trójkąt CDB jest prostokątny, a punkt E jest środkiem przeciwprostokątnej tego trójkąta,
Liczba 2√18−√32 jest równaChcę dostęp do Akademii! Wartość wyrażenia (5√-32⋅2^−1)/4⋅2^2 jest równa:Chcę dostęp do Akademii! Przy 23-procentowej stawce podatku VAT cena brutto samochodu jest równa 45018zł. Jaka jest cena netto tego samochodu?Chcę dostęp do Akademii! Wyrażenie 3a2−12ab+12b2 może być przekształcone do postaci:Chcę dostęp do Akademii! Para liczb x=2 i y=1 jest rozwiązaniem układu równań x+ay=5 i 2x−y=3, gdy:Chcę dostęp do Akademii! Równanie 2×2+11x+3=0:Chcę dostęp do Akademii! Wartość wyrażenia sin120°−cos30° jest równa:Chcę dostęp do Akademii! Wyrażenie 3sin3αcosα+3sinαcos3α może być przekształcone do postaci:Chcę dostęp do Akademii! Na rysunku przedstawiony jest fragment prostej o równaniu y=ax+b przechodzącej przez punkty (0,−2) i (6,2). Wtedy:Chcę dostęp do Akademii! Prosta k przecina oś Oy układu współrzędnych w punkcie (0,6) i jest równoległa do prostej o równaniu y=−3x. Wówczas prosta k przecina oś Ox układu współrzędnych w punkcie:Chcę dostęp do Akademii! Liczba niewymiernych rozwiązań równania x2(x+5)(2x−3)(x2−7)=0 jest równa:Chcę dostęp do Akademii! Na rysunku przedstawiono wykres funkcji f. Funkcja f jest rosnąca w przedziale:Chcę dostęp do Akademii! Ciąg geometryczny (an) jest określony wzorem an=2n dla n≥1. Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:Chcę dostęp do Akademii! Suma pierwszego i szóstego wyrazu pewnego ciągu arytmetycznego jest równa 13. Wynika stąd, że suma trzeciego i czwartego wyrazu tego ciągu jest równa:Chcę dostęp do Akademii! Miary kątów wewnętrznych pewnego trójkąta pozostają w stosunku 3:4:5. Najmniejszy kąt wewnętrzny tego trójkąta ma miarę:Chcę dostęp do Akademii! W trójkącie ABC, w którym |AC|=|BC|, na boku AB wybrano punkt D taki, że |BD|=|CD| oraz |∢ACD|=21° (zobacz rysunek). Wynika stąd, że kąt BCD ma miarę:Chcę dostęp do Akademii! Długości boków trójkąta są liczbami całkowitymi. Jeden bok ma 7cm, a drugi ma 2cm. Trzeci bok tego trójkąta może mieć długość:Chcę dostęp do Akademii! Boki trójkąta mają długości 20 i 12, a kąt między tymi bokami ma miarę 120°. Pole tego trójkąta jest równe:Chcę dostęp do Akademii! Tworząca stożka o promieniu podstawy 3 ma długość 6 (zobacz rysunek). Kąt α rozwarcia tego stożka jest równy:Chcę dostęp do Akademii! Graniastosłup o podstawie ośmiokąta ma dokładnie:Chcę dostęp do Akademii! W ostrosłupie czworokątnym, w którym wszystkie krawędzie mają tę samą długość, kąt nachylenia krawędzi bocznej do płaszczyzny podstawy ma miarę:Chcę dostęp do Akademii! Liczba 0,3 jest jednym z przybliżeń liczby 5/ dostęp do Akademii! Średnia arytmetyczna zestawu danych: 2,4,7,8,x jest równa n, natomiast średnia arytmetyczna zestawu danych: 2,4,7,8,x,2x jest równa 2n. Wynika stąd, że:Chcę dostęp do Akademii! Ile jest wszystkich liczb naturalnych dwucyfrowych podzielnych przez 6 i niepodzielnych przez 9?Chcę dostęp do Akademii! Na loterię przygotowano pulę 100 losów, w tym 4 wygrywające. Po wylosowaniu pewnej liczby losów, wśród których był dokładnie jeden wygrywający, szansa na wygraną była taka sama jak przed rozpoczęciem loterii. Stąd wynika, że wylosowano:Chcę dostęp do Akademii! Rozwiąż nierówność 3×2−9x≤x− dostęp do Akademii! Rozwiąż równanie x(x2−2x+3)=0Chcę dostęp do Akademii! Czworokąt ABCD wpisano w okrąg tak, że bok AB jest średnicą tego okręgu (zobacz rysunek). Udowodnij, że |AD|2+|BD|2=|BC|2+|AC| dostęp do Akademii! Udowodnij, że dla dowolnych liczb rzeczywistych x, y prawdziwa jest nierówność 3×2+5y2−4xy≥ dostęp do Akademii! Funkcja kwadratowa f, dla x=−3 przyjmuje wartość największą równą 4. Do wykresu funkcji f należy punkt A=(−1,3). Zapisz wzór funkcji kwadratowej dostęp do Akademii! Ze zbioru liczb naturalnych dwucyfrowych losowo wybieramy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że otrzymamy liczbę podzielną przez 8 lub liczbę podzielną przez dostęp do Akademii! Dany jest nieskończony rosnący ciąg arytmetyczny (an), dla n≥1 taki, że a5=18. Wyrazy a1, a3 oraz a13 tego ciągu są odpowiednio pierwszym, drugim i trzecim wyrazem pewnego ciągu geometrycznego. Wyznacz wzór na n-ty wyraz ciągu (an).Chcę dostęp do Akademii! Dany jest trójkąt równoramienny ABC, w którym |AC|=|BC|. Ponadto wiadomo, że A=(−2,4) i B=(6,−2). Wierzchołek C należy do osi Oy. Oblicz współrzędne wierzchołka dostęp do Akademii! Objętość ostrosłupa prawidłowego trójkątnego ABCS jest równa 273–√. Długość krawędzi AB podstawy ostrosłupa jest równa 6 (zobacz rysunek). Oblicz pole powierzchni całkowitej tego dostęp do Akademii! http://akademia-matematyki.edu.pl/ Suma pierwszego i szóstego wyrazu pewnego ciągu arytmetycznego jest równa 13. Wynika stąd, że suma trzeciego i czwartego w Trójkąt $ABC$ jest równoboczny. Punkt $E$ leży na wysokości $CD$ tego trójkąta oraz $|CE|=\frac{3}{4}|CD|$. Punkt $F$ leży na boku $BC$ i odcinek $EF$ jest prostopadły do $BC$ (zobacz rysunek). Wykaż, że $|CF|=\frac{9}{16}|CB|$ Rzucamy dwa razy symetryczną szczeciną kostką do gry, która na każdej ściance ma inną liczbę oczek - od jednego oczka do sześciu oczek. Oblicz prawdopodobieństwo zdarzenia $A$ polegającego na tym, że co najmniej jeden raz wypadnie ścianka z pięcioma oczkami. Kąt $\alpha$ jest ostry i spełnia warunek $\frac{2\sin\alpha+3\cos\alpha}{\cos\alpha}=4$. Oblicz tangens kąta $\alpha$. Dany jest kwadrat $ABCD$, w którym $A=\left(5,-\frac{5}{3}\right)$. Przekątna $BD$ tego kwadratu jest zawarta w prostej o równaniu $ y=\frac{4}{3}x$. Oblicz współrzędne punktu przecięcia przekątnych $AC$ i $BD$, oraz pole kwadratu $ABCD$. Wszystkie wyrazy ciągu geometrycznego $\left(a_n\right)$, określonego dla $n\geqslant 1$, są dodatnie. Wyrazy tego ciągu spełniają warunek $6a_1-5a_2+a_3=0$. Oblicz iloraz $q$ tego ciągu należący do przedziału $\left\langle 2\sqrt{2},3\sqrt{2}\right\rangle$. Biologia - Matura Czerwiec 2015, Poziom rozszerzony (Formuła 2007) - Zadanie 2. Kategoria: Skład organizmów Typ: Zamknięte (np. testowe, prawda/fałsz) Przyporządkuj każdemu z wymienionych związków organicznych odpowiedni pierwiastek, którego obecność w danym związku jest kluczowa dla jego funkcji w organizmie. cynk. Zadania z matury podstawowej z matematyki 2015 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Poniżej odnośniki do zadań: Zadanie na chwilę obecną niedostępne Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Zadanie 8 (0-1) Najmniejszą liczbą całkowitą spełniającą nierówność 2(x-2)≤4(x-1)+1 jest Źródło CKE - Arkusz egzaminacyjny 2014/2015 - Matura sierpień poziom podstawowy Czytaj dalej"Matura 2015 p. podstawowy matematyka sierpień - z. 8" Zadanie 6 (0-1) Wartość wyrażenia (a+5)2 jest większa od wartości wyrażenia (a2+10a) o Źródło CKE - Arkusz egzaminacyjny 2014/2015 - Matura sierpień poziom podstawowy Analiza: Odpowiedź: Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Zadanie 5 (0-1) Wartość wyrażenia jest równa A. -3 B. C. -2 D. 0 Źródło CKE - Arkusz egzaminacyjny 2014/2015 - Matura sierpień poziom podstawowy Czytaj dalej"Matura 2015 p. podstawowy matematyka sierpień - z. 5" Zadanie 34 (0-5) W nieskończonym ciągu arytmetycznym (an), określonym dla n≥1, suma jedenastu początkowych wyrazów tego ciągu jest równa 187. Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu, jest równa 12. Wyrazy (a1), (a3), (ak) ciągu (an), w podanej kolejności, tworzą nowy ciąg – trzywyrazowy ciąg geometryczny (bn). Oblicz k. Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 34" Zadanie 32 (0-4) Wysokość graniastosłupa prawidłowego czworokątnego jest równa 16 . Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy [math]\frac{3}{5}[/math]. Oblicz pole powierzchni całkowitej tego graniastosłupa. Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 32" Zadanie 31 (0-2) Jeżeli do licznika i do mianownika nieskracalnego dodatniego ułamka dodamy połowę jego licznika, to otrzymamy , a jeżeli do licznika i do mianownika dodamy 1, to otrzymamy . Wyznacz ten ułamek. Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 31" Zadanie 30 (0-2) W układzie współrzędnych są dane punkty A=(-43,-12), B=(50,19). Prosta AB przecina oś Ox w punkcie P. Oblicz pierwszą współrzędną punktu P. Źródło CKE - Arkusz egzaminacyjny 2014/2015 - Matura maj poziom podstawowy Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 30" Zadanie 29 (0-2) Oblicz najmniejszą i największą wartość funkcji kwadratowej f(x)=x2-6x+3 w przedziale . Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 29" Zadanie 28 (0-2) Dany jest kwadrat ABCD. Przekątne AC i BD przecinają się w punkcie E. Punkty K i M są środkami odcinków – odpowiednio – AE i EC. Punkty L i N leżą na przekątnej BD tak, że i (zobacz rysunek). Wykaż, że stosunek pola czworokąta KLMN do pola kwadratu ABCD jest równy 1: 3. Źródło: CKE matura podstawowa maj 2015 Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 28" Zadanie 27 (0-2) Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność 4x2-8xy+5y2≥0. Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 27" Zadanie 25 (0-1) W każdym z trzech pojemników znajduje się para kul, z których jedna jest czerwona, a druga – niebieska. Z każdego pojemnika losujemy jedną kulę. Niech p oznacza prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie z trzech wylosowanych kul będą czerwone. Wtedy Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 25" Zadanie 24 (0-1) Średnia arytmetyczna zestawu danych: 2, 4, 7, 8, 9 jest taka sama jak średnia arytmetyczna zestawu danych: 2, 4, 7, 8, 9, x Wynika stąd, że A. x=0 B. x=3 C. x=5 D. x=6 Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 24" Zadanie 23 (0-1) Każda krawędź graniastosłupa prawidłowego trójkątnego ma długość równą 8. Pole powierzchni całkowitej tego graniastosłupa jest równe Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 23" Zadanie 22 (0-1) Przekrojem osiowym stożka jest trójkąt równoboczny o boku długości 6. Objętość tego stożka jest równa Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 22" Zadanie 21 (0-1) W graniastosłupie prawidłowym czworokątnym EFGHIJKL wierzchołki E, G, L połączono odcinkami (tak jak na rysunku). Źródło: CKE matura poziom podstawowy maj 2015 Wskaż kąt między wysokością OL trójkąta EGL i płaszczyzną podstawy tego graniastosłupa. A. ∠HOL B. ∠OGL C. ∠HLO D. ∠OHL Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 21" Zadanie 20 (0-1) Dane są punkty M=(-2, 1) i N=(-1, 3). Punkt K jest środkiem odcinka MN. Obrazem punktu K w symetrii względem początku układu współrzędnych jest punkt A. K'=(2, -3/2) B. K'=(2, 3/2) C. K'=(3/2, 2) D. K'=(3/2, -2) Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 20" Zadanie 19 (0-1) Proste o równaniach: y=2mx-m2-1oraz y=4m2x+m2+1 są prostopadłe dla A. m=-½ B. m=½ C. m=1 D. m=2 Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 19" Zadanie 18 (0-1) Prosta l o równaniu y=m2x+3 jest równoległa do prostej k o równaniu y=(4m-4)x-3. Zatem A. m=2 B. m=-2 C. m=-2-2√2 D. m=2+2√2 Czytaj dalej"Matura 2015 p. podstawowy matematyka - z. 18" .
  • 737n08zn0r.pages.dev/744
  • 737n08zn0r.pages.dev/715
  • 737n08zn0r.pages.dev/206
  • 737n08zn0r.pages.dev/709
  • 737n08zn0r.pages.dev/544
  • 737n08zn0r.pages.dev/494
  • 737n08zn0r.pages.dev/681
  • 737n08zn0r.pages.dev/311
  • 737n08zn0r.pages.dev/761
  • 737n08zn0r.pages.dev/884
  • 737n08zn0r.pages.dev/753
  • 737n08zn0r.pages.dev/986
  • 737n08zn0r.pages.dev/486
  • 737n08zn0r.pages.dev/231
  • 737n08zn0r.pages.dev/250
  • matura czerwiec 2015 zad 31